

PRODUCT

DATA SHEET

Nickel Alloy Wire

Weld Process: GMAW, GTAW and SAW

Alloy: ERNi-1 (Alloy 61) Class: ERNi-1

Conforms to Certification: AWS A5.14 ASME SFA 5.14

Alloy: DMNA061

AWS Chemical Composition Requirements		C = 0.06	P = 0.008	Ni = Balance
C = 0.15 max	Cu = 0.25 max	Mn = 0.30	S = 0.003	Ti = 3.0
Mn = 1.0 max	Ni = 93.0 min	Fe = 0.10	Si = 0.40	A1 = 0.50
Fe = 1.0 max	Al = 1.50 max	Cu = 0.02		
P = 0.03 max	Ti = 2.0 - 3.5	Deposited All Weld Metal Properties % (AW)		
S = 0.015 max	Other = 0.50 max	Tensile Strength Yield Strength		66,000psi 88,000psi
Si = 0.75 max		Elongation		28%

Deposited Chemical Composition % (Typical)

Deposited Charpy-V-Notch Impact Properties %

Not applicable

Application

ERNi-1 (NA61) is used for GMAW, GTAW and SAW welding of Nickel 200 and 201, joining these alloys to stainless and carbon steels, and other nickel and copper-nickel base metals. Also used for overlaying steel.

Recommended Welding Parameters for TIG,MIG, and SAW Welding of Nickel Alloys

<u>Process</u>	Diameter of Wire	Voltage (V)	Amperage (A)	<u>Gas</u>
Tig	.035 inches x 36	12 -15	60 -90	100% Argon
	.045 inches x 36	13 -16	80 - 110	100% Argon
	1/16 inches x 36	14 - 18	90 - 130	100% Argon
	3/32 inches x 36	15 - 20	120 -175	100% Argon
	1/8 inches x 36	15 - 20	150 - 220	100% Argon
MIG	.035 inches	26 - 29	150 - 190	75% Argon + 25% Helium
	.045 inches	28 - 32	180 - 220	75% Argon + 25% Helium

	1/16 inches	29 – 33	200 - 250	75% Argon + 25% Helium
SAW	3/32 inches	28 – 30	275 – 350	Suitable Flux may be used
	1/8 inches	29 - 32	350 - 450	Suitable Flux may be used
	5/32 inches	30 - 33	400 - 550	Suitable Flux may be used

Note: Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, cost, and

Operability into consideration.

Note: Both agglomerated and fused fluxes can be used for submerged arc welding.

Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion

resistance and mechanical properties.

