

PRODUCT

DATA SHEET

Stainless Steel Bare Wire

Weld Process: Used for Mig, Tig, & Submerged Arc

Alloy: 430 Class: ER430

Conforms to Certification: AWS A5.9 / ASME SFA 5.9

Alloy: DM430

PRODUCT

DATA SHEET

AWS Chemical Composition

Si = 0.50 maxC = 0.10 maxCr = 15.5 - 17.0 P = 0.03 maxNi = 0.60 max S = 0.03 max Mo = 0.75 max Cu = 0.75 maxMn = 0.60 max

Deposited Chemical Composition % (Typical)

P = 0.014C = 0.07Mo = 0.10Cr = 16.5Mn = 0.44S = 0.01Ni = 0.25Si = 0.36

Deposited All Weld Metal Properties

Data is typical for ER430 weld metal deposited by mig using argon +2% oxygen and tig using 100% argon as the shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties R.T.

Yield Strength 59,000psi Tensile Strength 77,500psi Elongation 25%

Application

ER430 is a ferritic stainless steel which offers good ductility in heat treated condition. In addition to the applications of welding similar alloys, it is also used for overlays and thermal spraying.

Recommended Welding Parameters

GMAW "Mig Process"			Reversed Polarity				
Wire <u>Diameter</u>	Wire Feed	Amps	Volts	Shielding Gas	Gas CFH		
Short Arc Welding							
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25		
Spray Arc Welding							
.035 .045	20-39 16-30	140-220 160-260	24-29 25-30	Argon+2% O ₂ Argon+2% O ₂	38 38		
1/16	10-16	230-350	27-31	Argon+2% O ₂	38		

GTAW "Tig Process"

Wire <u>Diameter</u>	Amps DCEN	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding

Reverse Polarity is suggested

Wire Diameter	<u>Amps</u>	<u>Volts</u>
3/32	250-450	28-32
1/8	300-500	29-34
5/32	400-600	30-35
3/16	500-700	30-35

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.