

PRODUCT

DATA SHEET

Stainless Steel Bare Wire

Weld Process: Used for Mig, Tig, & Submerged Arc

Alloy: 347 Class: ER347

Conforms to Certification: AWS A5.9 / ASME SFA 5.9

Alloy: DM347

PRODUCT

DATA SHEET

AWS Chemical Composition

 $\begin{array}{lll} C = 0.08 \; max & Si = 0.30 - 0.65 \\ Cr = 19.0 - 21.5 & P = 0.03 \; max \\ Ni = 9.0 - 11.0 & S = 0.03 \; max \\ Mo = 0.75 \; max & Cu = 0.75 \; max \\ Mn = 1.0 - 2.5 & Nb = 10 \; x \; C \; (min) - 1.0 \; (max) \end{array}$

Deposited Chemical Composition % (Typical)

C = 0.04	•	Mo = 0.30	P = 0.025
Cr = 19.50	Mn = 1.30	S = 0.015	
Ni = 9.50	Si = 0.40	Cu = 0.10	
Nb = 0.40			

Deposited All Weld Metal Properties

Data is typical for ER347 weld metal deposited by mig using argon + 2% oxygen and tig using 100% argon as the shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties R.T.

Tensile Strength	88,000psi
Yield Strength	58,000psi
Elongation	42%

Application

ER347 is recommended for welding AISI 347 and 321. The weld metal has good resistance to general corrosion. ER347 is suitable for applications where welds are subjected to high temperatures ($+750^{\circ}$ F).

Recommended Welding Parameters

<u>GMAV</u>	V "Mig Pı	rocess"	Rev	versed Polarity	
Wire Diamete	Wire Feed	Amps	Volts	Shielding Gas	Gas CFH
Short Ar	c Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Ar	c Welding				
.035	20-39 16-30	140-220 160-260	24-29 25-30	Argon+2% O ₂ Argon+2% O ₂	38 38
1/16	10-36	230-350	27-31	Argon+2% O ₂	38

GTAW "Tig Process"

Wire <u>Diameter</u>	Amps DCEN	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding

Reverse Polarity is suggested

Wire Diameter	<u>Amps</u>	<u>Volts</u>	
3/32	250-450	28-32	
1/8	300-500	29-34	
5/32	400-600	30-35	
3/16	500-700	30-35	

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.