

PRODUCT

DATA SHEET

Stainless Steel Bare Wire

Weld Process: Used for Mig, Tig, & Submerged Arc

Alloy: 316 Class: ER316

Conforms to Certification: AWS A5.9 / ASME SFA 5.9

Alloy: DM316

PRODUCT

DATA SHEET

AWS Chemical Composition

C = 0.08 max Si = 0.30 - 0.65 Cr = 18.0 - 20.0 P = 0.03 max Ni = 11.0 - 14.0 S = 0.03 max Mo = 2.0 - 3.0 Cu = 0.75 maxMn = 1.0 - 2.5

Deposited Chemical Composition % (Typical)

C = 0.05 P = 0.012 Cr = 19.25 Mn = 1.70 S = 0.010 Ni = 11.25 Si = 0.40

Deposited All Weld Metal Properties

Data is typical for ER316 weld metal deposited by Mig using Argon + 2% oxygen and Tig using 100% Argon as the shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties (R.T.)

Yield Strength	59,000psi
Tensile Strength	88,000psi
Elongation	40%
Reduction of Area	60%

Application

ER316 is recommended for welding AISI 316 stainless steel applications when high creep strength at elevated temperatures where resistance to pitting by corrosive liquids is needed.

Recommended Welding Parameters

GMAW "Mig Process"		Reversed Polarity			
Wire <u>Diameter</u>	Wire Feed	Amps	Volts	Shielding Gas	Gas CFH
Short Arc Welding					
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Arc Welding					
.035 .045 1/16	20-39 16-30 10-16	140-220 160-260 230-350	24-29 25-30 27-31	Argon+2% O ₂ Argon+2% O ₂ Argon+2% O ₂	38 38 38

GTAW "Tig Process"

Wire <u>Diameter</u>	Amps DCEN	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding Reverse Polarity is suggested

Wire Diameter	<u>Amps</u>	<u>Volts</u>
3/32	250-450	28-32
1/8	300-500	29-34
5/32	400-600	30-35
3/16	500-700	30-35

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.