

DATA SHEET

Stainless Steel Bare Wire

Weld Process: Used for Mig, Tig, & Submerged Arc Alloy: 312 Class: ER312 Conforms to Certification: AWS A5.9 / ASME SFA 5.9 Alloy: DM312

PRODUCT

DATA SHEET

Deposited Chemi	ical Composition	% (Typical)
C = 0.11 Mo = 0.	15 P = 0.01	3
Cr = 29.00	Mn = 1.60	S = 0.013
Ni = 9.25	Si = 0.40	

Deposited All Weld Metal Properties

Data is typical for ER312 weld metal deposited by Mig using Argon + 2% oxygen, and tig using Argon as the shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties (R.T.)

Yield Strength	75,000psi
Tensile Strength	105,000psi
Elongation	25%
Reduction of Area	30%

Application

ER312 is used to weld cast alloys of similar composition and is used to weld dissimilar metals and weld overlays. This alloy has very high ferrite. When welding similar cast alloys, limit welding to two or three layers only.

Recommended Welding Parameters

GMAV	V "Mig P	rocess"	Re	versed Polarity	
Wire Diamete	Wire <u>Feed</u>	Amps	Volts	Shielding Gas	Gas CFH
Short Ar	c Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Ar	rc Welding				
.035 .045 1/16	20-39 16-30 10-16	140-220 160-260 230-350	24-29 25-30 27-31	Argon+2% O ₂ Argon+2% O ₂ Argon+2% O ₂	38 38 38

GTAW "Tig Process"

Wire <u>Diameter</u>	Amps DCEN	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding Reverse Polarity is suggested

Wire Diameter	Amps	<u>Volts</u>
3/32	250-450	28-32
1/8	300-500	29-34
5/32	400-600	30-35
3/16	500-700	30-35

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.