

PRODUCT

DATA SHEET

Copper & Copper Alloy Wire

Weld Process: GMAW, GTAW and SAW and Oxy-Fuel Welding Processes

Alloy: ERCuNi (Alloy 67) Class: ERCuNi

Conforms to Certification: AWS A5.7 ASME SFA 5.7

Alloy: DMNA067

AWS Chemical Composition Requirements		Ni = 31.0	Mn = 0.75	P = 0.006
Cu = Remainder	Ni = 29.0 - 32.0	Cu = Balance	Si = 0.10	Ti = 0.35
Mn = 1.0 max	P = 0.02	Fe = 0.55		
Fe = 0.40 - 0.75	Pb = 0.02			
Si = 0.25 max	Ti = 0.20 - 0.50	Deposited All Weld Metal Properties % (AW)		
Other = 0.50 max		Tensile Strength Yield Strength Elongation	54,000 21,500 32%	

Deposited Chemical Composition % (Typical)

Deposited Charpy-V-Notch Impact Properties %

Not applicable

Application

ERCuNi (NA67) is used for gas metal and gas tungsten arc welding. Can also be used by oxy-fuel welding of 70/30, 80/20, and 90/10 copper nickel alloys. A barrier layer of nickel alloy 610 is recommended prior to overlaying steel with GMAW weld process.

Recommended Welding Parameters for TIG, MIG, and SAW Welding of Nickel Alloys

<u>Process</u>	Diameter of Wire	Voltage (V)	Amperage (A)	Gas
Tig	.035 inches x 36	12 -15	60 -90	100% Argon
	.045 inches x 36	13 -16	80 - 110	100% Argon
	1/16 inches x 36	14 - 18	90 - 130	100% Argon
	3/32 inches x 36	15 - 20	120 -175	100% Argon
	1/8 inches x 36	15 - 20	150 - 220	100% Argon
MIG	.035 inches	26 – 29	150 – 190	75% Argon + 25% Helium
WIIG	.045 inches	28 – 32	180 - 220	75% Argon + 25% Helium

	1/16 inches	29 – 33	200 - 250	75% Argon + 25% Helium
SAW	3/32 inches	28 - 30	275 – 350	Suitable Flux may be used
	1/8 inches	29 - 32	350 - 450	Suitable Flux may be used
	5/32 inches	30 - 33	400 - 550	Suitable Flux may be used

Note: Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, cost, and

Operability into consideration.

Note: Both agglomerated and fused fluxes can be used for submerged arc welding.

Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion

resistance and mechanical properties.

