

PRODUCT

DATA SHEET

Stainless Steel Bare Wire

Weld Process: Used for Mig, Tig, & Submerged Arc

Alloy: 347Si Class: ER347Si

Conforms to Certification: AWS A5.9 / ASME SFA 5.9

Alloy: DM347SI

PRODUCT

DATA SHEET

AWS Chemical Composition

 $C = 0.08 \text{ max} \qquad Si = 0.65 - 1.00$ $Cr = 19.0 - 21.5 \qquad P = 0.03 \text{ max}$ $Ni = 9.0 - 11.0 \qquad S = 0.03 \text{ max}$ $Mo = 0.75 \text{ max} \qquad Cu = 0.75 \text{ max}$

Mn = 1.0 - 2.5 $Nb = 10 \times C \text{ (min)} - 1.0 \text{ (max)}$

Deposited Chemical Composition % (Typical)

Deposited All Weld Metal Properties

Data is typical for ER347SI weld metal deposited by mig using argon + 2% oxygen and tig using 100% argon as the shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties R.T.

Tensile Strength	89,500psi
Yield Strength	58,000psi
Elongation	42%

Application

ER347SI is a columbium stabilized stainless steel welding wire used to weld Types 321 and 347. Addition of columbium reduces the possibility of chromium carbide precipitation and consequent inter-granular corrosion.

Recommended if the weld metal is to be subjected to high temperatures above 750°F.

Recommended Welding Parameters

<u>GMAW</u>	"Mig Pro	ocess"	Rev	ersed Polarity	
Wire <u>Diameter</u>	Wire Feed	Amps	Volts	Shielding Gas	Gas CFH
Short Arc	Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Arc Welding					
.035 .045 1/16	20-39 16-30 10-16	140-220 160-260 230-350	24-29 25-30 27-31	Argon+2% O ₂ Argon+2% O ₂ Argon+2% O ₂	38 38 38

GTAW "Tig Process"

Wire <u>Diameter</u>	Amps DCEN	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding

Reverse Polarity is suggested

Wire Diameter	<u>Amps</u>	<u>Volts</u>	
3/32	250-450	28-32	
1/8	300-500	29-34	
5/32	400-600	30-35	
3/16	500-700	30-35	

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.