

PRODUCT

DATA SHEET

Stainless Steel Bare Wire

Weld Process: Used for Mig, Tig, & Submerged Arc

Alloy: 330 Class: ER330

Conforms to Certification: AWS A5.9 / ASME SFA 5.9

Alloy: DM330

PRODUCT

DATA SHEET

AWS Chemical Composition

C = 0.18 - 0.25 Si = 0.30 - 0.65Cr = 15.0 - 17.0 P = 0.03 maxNi = 34.0 - 37.0 S = 0.03 maxMo = 0.75 max Cu = 0.75 maxMn = 1.0 - 2.5

Deposited Chemical Composition % (Typical)

C = 0.23	•	Mo = 0.10	P =
0.014 Cr = 15.95	Mn = 1.95	S = 0.005	
Ni = 35.20	Si = 0.42	Cu = 0.15	

Deposited All Weld Metal Properties

Data is typical for ER330 weld metal deposited by mig using argon + 2% oxygen and tig using 100% argon as the shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties R.T.

Tensile Strength	84,000psi
Yield Strength	56,500psi
Elongation	29%

Application

ER330 is used to weld cast and wrought material of similar chemical composition. The weld metal provides excellent heat and scale resistance up to 1800°F. However, high sulfur environments may adversely affect elevated temperature performance. This being a fully austenitic alloy, low heat input is necessary

Recommended Welding Parameters

<u>GMAW</u>	"Mig Pro	ocess"	Reve	ersed Polarity	
Wire <u>Diameter</u>	Wire Feed	Amps	Volts	Shielding Gas	Gas CFH
Short Arc V	Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Arc	Welding				
.035 .045	20-39 16-30	140-220 160-260	24-29 25-30	Argon+2% O ₂ Argon+2% O ₂	38 38
1/16	10-16	230-350	27-31	Argon+2% O ₂	38

GTAW "Tig Process"

Wire <u>Diameter</u>	Amps DCEN	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding

Reverse Polarity is suggested

Wire Diameter	<u>Amps</u>	<u>Volts</u>	
3/32	250-450	28-32	
1/8	300-500	29-34	
5/32	400-600	30-35	
3/16	500-700	30-35	

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.