

PRODUCT

DATA SHEET

Stainless Steel Bare Wire

Weld Process: Used for Mig, Tig, & Submerged Arc

Alloy: 317L Class: ER317L

Conforms to Certification: AWS A5.9 / ASME SFA 5.9

Alloy: DM317L

PRODUCT

DATA SHEET

AWS Chemical Composition

C = 0.03 max Si = 0.30 - 0.65 Cr = 18.5 - 20.5 P = 0.03 max Ni = 13.0 - 15.0 S = 0.03 maxMo = 3.0 - 4.0 Cu = 0.75 max

Mn = 1.0 - 2.5

Deposited Chemical Composition % (Typical)

C = 0.02 Mo = 3.40 P = 0.010 Cr = 18.50 Mn = 1.70 S = 0.012 Ni = 13.20 Si = 0.40

Deposited All Weld Metal Properties

Data is typical for ER317L weld metal deposited by Mig using Argon + 2% oxygen and Tig using 100% Argon as the shielding gas. Data on sub-arc is dependent on the type of flux used.

Mechanical Properties (R.T.)

Yield Strength	55,000psi
Tensile Strength	87,000psi
Elongation	47%
Reduction of Area	70%

Application

ER317L is used for welding stainless steels with similar composition. Due to its higher molybdenum content, this alloy offers high resistance to pitting and crevice corrosion. Lower carbon makes the weld metal less susceptible to inter-granular corrosion.

Recommended Welding Parameters

GMAW '	"Mig Pro	ocess"	Reve	ersed Polarity	
Wire <u>Diameter</u>	Wire <u>Feed</u>	Amps	Volts	Shielding Gas	Gas CFH
Short Arc V	Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Arc Welding					
.045	20-39 16-30	140-220 160-260	24-29 25-30	Argon+2% O ₂ Argon+2% O ₂	38 38
1/16	10-16	230-350	27-31	Argon+2% O ₂	38

GTAW "Tig Process"

Wire <u>Diameter</u>	Amps DCEN	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding

Reverse Polarity is suggested

Wire Diameter	<u>Amps</u>	<u>Volts</u>	
3/32	250-450	28-32	
1/8	300-500	29-34	
5/32	400-600	30-35	
3/16	500-700	30-35	

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties.