

PRODUCT

DATA SHEET

Stainless Steel Bare Wire

Weld Process: Used for Mig, Tig, & Submerged Arc

Alloy: 309L Class: ER309L

Conforms to Certification: AWS A5.9 / ASME SFA 5.9

Alloy: DM309L

PRODUCT

DATA SHEET

AWS Chemical Composition Requirements

C = 0.03 max	P = 0.03 max
Cr = 23.0 - 25.0	S = 0.03 max
Ni = 12.0 - 14.0	Mo = 0.75 max
Mn = 1.0 - 2.5	Cu = 0.75 max
Si = 0.30 - 0.65	

Deposited Chemical Composition % (Typical)

C = 0.015	P = 0.012
Cr = 23.50	S = 0.010
Si = 0.40	Ni = 13.50
Mn = 2.0	

Deposited All Weld Metal Properties

Data is typical for ER309L weld metal deposited by Mig using Argon + 2% oxygen and Tig using 100% Argon as the shielding gas. Data on sub-arc is not presented, as sub-arc is dependent on the type of flux used.

Mechanical Properties (R.T.)

Yield Strength	58,000psi
Tensile Strength	87,000psi
Elongation	40%
Reduction of Area	60%

Application

ER309L has the same qualities as ER309 but with the lower carbon content deemed necessary in many chemical applications. ER309L is preferred over ER309 for cladding over carbon or low alloy steels, or dissimilar joints that are heat treated.

Recommended Welding Parameters

<u>GMAV</u>	V "Mig P	rocess"	Re	versed Polarity	
Wire Diameter	Wire Feed	Amps	Volts	Shielding Gas	Gas CFH
Short Are	c Welding				
.030 .035	13-26 13-26	40-120 60-140	16-20 16-22	Argon+2% O ₂ Argon+2% O ₂	25 25
Spray Ar	c Welding				
.035 .045 1/16	20-39 16-30 10-16	140-220 160-260 230-350	24-29 25-30 27-31	Argon+2% O ₂ Argon+2% O ₂ Argon+2% O ₂	38 38 38

GTAW "Tig Process"

Wire <u>Diameter</u>	Amps DCEN	Voltage	Gases
.035	60-90	12-15	Argon 100%
.045	80-110	13-16	Argon 100%
1/16	90-130	14-16	Argon 100%
3/32	120-175	15-20	Argon 100%

Note: Parameters for tig welding are dependent upon plate thickness and welding position.

Other shielding Gases may be used for Mig and Tig welding. Shielding gases are chosen taking Quality, Cost, and Operability into consideration

Submerged Arc Welding Reverse Polarity is suggested

Wire Diameter	<u>Amps</u>	<u>Volts</u>	
3/32	250-450	28-32	
1/8	300-500	29-34	
5/32	400-600	30-35	
3/16	500-700	30-35	

Both Agglomerated and fused fluxes can be used for submerged arc welding. Note: The chemical composition of the flux mainly affects the chemistry of the weld metal and consequently its corrosion resistance and Mechanical properties